Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
Viruses ; 14(9)2022 09 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2055391

RESUMEN

Mastomys natalensis is the natural host of various arenaviruses, including the human-pathogenic Lassa virus. Homologous arenaviruses, defined here as those having M. natalensis as a natural host, can establish long-lasting infection in M. natalensis, while these animals rapidly clear arenaviruses having another rodent species as a natural host (heterologous viruses). Little is known about the mechanisms behind the underlying arenavirus-host barriers. The innate immune system, particularly the type I interferon (IFN) response, might play a role. In this study, we developed and validated RT-PCR assays to analyse the expression of M. natalensis interferon-stimulated genes (ISGs). We then used these assays to study if homologous and heterologous viruses induce different IFN responses in M. natalensis cells. Infection experiments were performed with the homologous Lassa and Morogoro viruses and the related but heterologous Mobala virus. Compared to the direct induction with IFN or Poly(I:C), arenaviruses generally induced a weak IFN response. However, the ISG-expression profiles of homologous and heterologous viruses were similar. Our data indicate that, at least in M. natalensis cells, the IFN system is not a major factor in the virus-host barrier for arenaviruses. Our system provides a valuable tool for future in vivo investigation of arenavirus host restrictions at the level of the innate immune response.


Asunto(s)
Infecciones por Arenaviridae , Arenavirus , Interferón Tipo I , Animales , Arenavirus/fisiología , Humanos , Inmunidad Innata , Murinae , Tanzanía
3.
BMC Med ; 19(1): 160, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1301851

RESUMEN

BACKGROUND: East Africa is home to 170 million people and prone to frequent outbreaks of viral haemorrhagic fevers and various bacterial diseases. A major challenge is that epidemics mostly happen in remote areas, where infrastructure for Biosecurity Level (BSL) 3/4 laboratory capacity is not available. As samples have to be transported from the outbreak area to the National Public Health Laboratories (NPHL) in the capitals or even flown to international reference centres, diagnosis is significantly delayed and epidemics emerge. MAIN TEXT: The East African Community (EAC), an intergovernmental body of Burundi, Rwanda, Tanzania, Kenya, Uganda, and South Sudan, received 10 million € funding from the German Development Bank (KfW) to establish BSL3/4 capacity in the region. Between 2017 and 2020, the EAC in collaboration with the Bernhard-Nocht-Institute for Tropical Medicine (Germany) and the Partner Countries' Ministries of Health and their respective NPHLs, established a regional network of nine mobile BSL3/4 laboratories. These rapidly deployable laboratories allowed the region to reduce sample turn-around-time (from days to an average of 8h) at the centre of the outbreak and rapidly respond to epidemics. In the present article, the approach for implementing such a regional project is outlined and five major aspects (including recommendations) are described: (i) the overall project coordination activities through the EAC Secretariat and the Partner States, (ii) procurement of equipment, (iii) the established laboratory setup and diagnostic panels, (iv) regional training activities and capacity building of various stakeholders and (v) completed and ongoing field missions. The latter includes an EAC/WHO field simulation exercise that was conducted on the border between Tanzania and Kenya in June 2019, the support in molecular diagnosis during the Tanzanian Dengue outbreak in 2019, the participation in the Ugandan National Ebola response activities in Kisoro district along the Uganda/DRC border in Oct/Nov 2019 and the deployments of the laboratories to assist in SARS-CoV-2 diagnostics throughout the region since early 2020. CONCLUSIONS: The established EAC mobile laboratory network allows accurate and timely diagnosis of BSL3/4 pathogens in all East African countries, important for individual patient management and to effectively contain the spread of epidemic-prone diseases.


Asunto(s)
COVID-19/prevención & control , Redes Comunitarias , Dengue/epidemiología , Fiebre Hemorrágica Ebola/epidemiología , Laboratorios , Unidades Móviles de Salud , Burundi/epidemiología , COVID-19/terapia , Dengue/prevención & control , Epidemias , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/terapia , Humanos , Kenia/epidemiología , Unidades Móviles de Salud/economía , Salud Pública , Rwanda/epidemiología , SARS-CoV-2 , Sudán del Sur/epidemiología , Tanzanía/epidemiología , Uganda/epidemiología
4.
Viruses ; 13(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1282631

RESUMEN

Several of the human-pathogenic arenaviruses cause hemorrhagic fever and have to be handled under biosafety level 4 conditions, including Lassa virus. Rapid and safe inactivation of specimens containing these viruses is fundamental to enable downstream processing for diagnostics or research under lower biosafety conditions. We established a protocol to test the efficacy of inactivation methods using the low-pathogenic Morogoro arenavirus as surrogate for the related highly pathogenic viruses. As the validation of chemical inactivation methods in cell culture systems is difficult due to cell toxicity of commonly used chemicals, we employed filter devices to remove the chemical and concentrate the virus after inactivation and before inoculation into cell culture. Viral replication in the cells was monitored over 4 weeks by using indirect immunofluorescence and immunofocus assay. The performance of the protocol was verified using published inactivation methods including chemicals and heat. Ten additional methods to inactivate virus in infected cells or cell culture supernatant were validated and shown to reduce virus titers to undetectable levels. In summary, we provide a robust protocol for the validation of chemical and physical inactivation of arenaviruses in cell culture, which can be readily adapted to different inactivation methods and specimen matrices.


Asunto(s)
Arenavirus/fisiología , Desinfección/métodos , Inactivación de Virus , Animales , Técnicas de Cultivo de Célula , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Desinfección/normas , Humanos , Reproducibilidad de los Resultados , Manejo de Especímenes/métodos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA